
1

Parallelization of NAS Benchmarks for Shared Memory
Multiprocessors

Abdul Waheed and Jerry Yan†

NAS Technical Report NAS-98-010 March ‘98

{waheed,yan}@nas.nasa.gov
NAS Parallel Tools Group

NASA Ames Research Center
Mail Stop T27A-2

Moffett Field, CA 94035-1000

Abstract

Thispaperpresentsour experiencesof parallelizing thesequentialimplementationof NAS
benchmarksusing compiler directiveson SGI Origin2000 distributed shared memory
(DSM) system.Porting existing applications to new high performanceparallel and
distributed computing platforms is a challenging task. Ideally, a user develops a
sequential version of the application, leaving the task of porting the code to
parallelizationtoolsandcompilers.Dueto thesimplicityof programmingshared-memory
multiprocessors,compilerdevelopershaveprovidedvariousfacilities to allow theusers to
exploit parallelism. Native compilers on SGI Origin2000 support multiprocessing
directivesto allow users to exploit loop-level parallelismin their programs.Additionally,
supportingtools can accomplishthis processautomatically. We experimentedwith these
compiler directivesand supportingtools by parallelizing sequentialimplementationof
NAS benchmarks.Resultsreportedin this paper indicate that with minimal effort, the
performance gain is comparable with the hand-parallelized, carefully optimized,
message-passing implementations of the same benchmarks.

���������
	������������������������� ������!#"%$&���(' "%)+*,��*.-/�����1032%�(��)4*,�65%718:9�;%<%;%"%����= =1	>� ��?���	>��@A"%-B*DC:9�<%;%E%718%<%<%<

2

3

1 Introduction

Distributed Shared Memory (DSM) systemsare becomingincreasinglypopular in high performance

computing. Such systems can be considered scalable alternatives of conventional Symmetric

Multiprocessors (SMPs) due to distributed memory. Additionally, DSM systemsoffer the easeof

programmingdue to a global addressspaces,similar to SMPs.There are at least three programming

paradigmsthat canexploit parallelismofferedby a DSM system:(1) explicit message-passing;(2) data-

parallelism;and(3) compiler-directedmultiprocessing.Explicit message-passingallows theusersto write

parallel programswith greater control over communication.This techniqueoften involves domain

decomposition,suchthat eachprocessorin the systemworks on a part of the entire programdatain a

Single Program, Multiple Data (SPMD) paradigm. Intermediate results and synchronizationsare

accomplishedthrough commonly used message-passinglibraries, such as MPI [8]. Data-parallel

programminglanguagesallow theusersto write SPMDprogramswithoutworryingaboutcommunication,

which is handledby the compilerandits runtimesystem.The main sourceof parallelismis the program

data, which can be distributed amongdifferent processorsin a variety of ways. Data distribution is

controlled through compiler directives. High PerformanceFortran (HPF [5]) is a standardfor these

directives that have been used by several compiler developers.

Bothmessage-passinganddata-parallelismforceauserto developaparallelalgorithm,which is acomplex

andchallengingtask.Ideally, a userwould like to developsequentialcodefor a givenapplication,leaving

the taskof porting the codeto parallelizationtools andcompilers.Due to the simplicity of programming

DSM systems,compiler developershave beeninvestigating different techniquesto exploit parallelism

directly for suchsystems.This processcan be accomplishedautomaticallywith a compiler or through

somehintsprovidedby theuserto thecompiler[11]. Someexamplesof automaticparallelizationtoolsthat

transformsequentialcodeto parallelcodeby insertingparallelizationdirectivessupportedby the native

compilers include: SUIF [2], Polaris [12], and KAP [7].

In this paper, we presentour experiencesof using native parallelizationand optimizationtools on SGI

Origin2000. Origin 2000 is a DSM system with a cache-coherent Non Uniform Memory Access

(ccNUMA) architecture.Eachnodeof the systemtypically consistsof two R10000processorswith two

levels of separatedataand instructioncachesfor eachprocessor;and512 MB of main memoryshared

betweentwo processorson the node. Multiple systemnodesare connectedin a hypercubetopology

througha high speednetwork. Native tools thatareof interestto our parallelizationeffort include:Power

FortranAccelerator (PFA), whichcanautomaticallyinsertparallelizationdirectivesin sequentialcodeand

transformthe loopsto enhancetheir performance;Parallel AnalyzerView (PAV), which canannotatethe

resultsof dependenceanalysisof PFA andpresentthemgraphically;andMipsPro Fortran77compilerwith

MP runtime library to compile and executethe parallelizedcode.In addition to using thesetools, we

insertedsomedirective by handto assistthe compilerandtunethe performance.We experimentedwith

thesecompiler directives and supportingtools by parallelizing the sequentialimplementationof NAS

benchmarks[4]. Our resultsindicatethat with minimum effort, the performanceis almostasgoodasthe

hand-parallelized, carefully optimized, message-passing version of the same benchmarks.

In section2, we outline the directives-basedparallelizationparadigm.Section3 provides detailsof our

parallelizationof NAS benchmarksfor Origin2000.Wecomparetheperformanceof parallelizedcodewith

4

hand-parallelizedcode in Section 4. Section 5 overviews related researchefforts. We discussour

conclusions in Section 6.

2 Directives-Based Parallelization Methodology

A sequentialprogramis first analyzedto discover: (1) loopsthatarethemainsourceof parallelism;and(2)

any dependenciesamongdifferent loop iterationsthat inhibit parallelizationof that loop for the sake of

correctness.Basedon this analysis,it may be possibleto modify the code to remove dependencies.

Parallelismis expressedsimplyby insertingappropriatecompilerdirectivesbeforea loop[9,11].As Figure

1 indicates,this is essentiallyan iterative processof modifying the loop nestsin thesequentialcodeuntil

mostof thecomputationallyexpensive loopsareparallelized.Finally, theparallelizedcode(i.e.,sequential

codewith compilerdirectives)is compiledandlinkedwith appropriateruntimelibrariesto executeon the

target system.

Directives-basedparallelismis supportedby the MP runtimelibrary on Origin2000,which implementsa

fork-and-join paradigmof parallelism.A master thread initiates the program,createsmultiple slave

threads, schedulesthe iterationsof parallelizedloops on all the threadsincluding itself, waits for the

completionof a parallel loop by all the slave threads,and executessequentialportionsof the program.

Slave threadsmustwait for work (i.e., for partsof subsequentparallel loops)while the masterthreadis

executing a sequential portion of the code.

3 Parallelization of Sequential NAS Benchmarks

NAS benchmarksconsist of several ComputationalFluid Dynamics (CFD) kernels and applications,

frequentlyusedto solve systemsof partial differentialequationsthat model the dynamicsof a physical

system.Weselectfiveof thesebenchmarks:BT, SP, CG,MG, andFT. Theserepresentimportantclassesof

solvers for partial differential equationsusedin real CFD applications.Since, thesesolvers represent

interesting compute-intensive parts of CFD applications, we selected them for this parallelization study.

3.1 Automatic Parallelization

TheSP, CG,andMG benchmarkswereparallelizedusingPFA andPAV. This resultedin parallelizationof

most of the loops that consumedsignificantportion of the entire execution.Flow diagramsin Figure 2

represent the key subroutines of benchmarks SP, CG, and MG that were parallelized.

Sequential code
Parallel code for
an SMP system

Code
modifications as

needed

Directive
insertions

Performance
evaluation

Figure 1. General methodology of parallelizing sequential code for shared-memory multiprocessors
using compiler directives.

5

SPis anapplicationbenchmark.TheSPcodesolvesa ScalarPentadiagonalsystemof equationsresulting

from approximatelyfactored,implicit, finite-differencediscretizationof the Navier-Stokes equationsin

three dimensions.The solution is basedon an Alternating Direction Implicit (ADI) algorithm. This

algorithm solves three sets of uncoupledsystemsof equationsin x, y, and z directions. The main

subroutinesof SP, as illustrated in Figure 2(a), contain one or more loops whoseiterationscould be

distributed among multiple processors.

CG is a kernelbenchmarkbasedon a ConjugateGradientmethodto computean approximationto the

smallesteigen value of a large, sparse,symmetric positive definite matrix. This kernel implements

unstructuredgrid computationsandcommunications.TheCG code(seeFigure2(b)) consistsof only one

major loop that was identified and parallelized automatically by PFA.

MG usesa Multi-Grid methodto computethe solutionof the three-dimensionalscalarPoissonequation.

Four critical subroutinesthatusemulti-grid operatorson a grid performtheV-cycle algorithm(seeFigure

2(c)): thesmoother(psinv); theresidualcalculation(resid); theresidualprojection(rprj3); andthetrilinear

interpolationof thecorrection(interp). All four subroutinesexhibit fine-grainedloop-level parallelismthat

is detected by PFA to parallelize this code.

3.2 Hand-Coding of Parallelization Directives

PFA cannotautomaticallyparallelizeany significantnumberof time-consumingloops for FT and BT

benchmarksdueto two reasons:(1) sourcecodeshows complex dependencesamongiterationsof a loop

that requireprogrammerinput to resolve; and (2) a potentially parallel loop containsa procedurecall,

which may or may not have dependences on subsequent iterations of the loop.

PAV explainedwhy a specific loop was not parallelizedby PFA. For instance,BT is similar to SP in

structure(seeFigure3(b))but thereareseveralprocedurecallsembeddedin parallelizableloopsof BT that

PFA couldnot handle.In addition,bothbenchmarksrequiredmanualtransformationof several loop nests

to beparallelized.Datadistribution directiveswerealsoaddedto improve theco-locationof computation

anddatafor thesetwo benchmarks.After insertingparallelizationdirectivesby hand,thisparallelizedcode

x_solve

y_solve

lhsx

x_solve

ninvr

add

Repeat n times
adi

compute_rhs

txinvr

lhsz

z_solve

ninvr

lhsy

y_solve

ninvr
Repeat n times

cg

conj_grad

interp

resid

Repeat n times
mg

rprj3

psinv

Figure 2. Code structure of sequential NAS benchmarks: (a) SP; (b) CG; and (c) MG.

(a) (b) (c)

z_solve

psinv

6

waspassedthroughPFA to obtainfurther loop optimization.Flow diagramsin Figure3 representthekey

subroutines of benchmarks FT and BT.

FT is the computationalkernel of a three dimensionalFast Fourier Transform (FFT)-basedspectral

method.The codecomputesFFT in the first, second,and third dimensionsby calling subroutinesffts1,

ffts2, and ffts3, respectively (see Figure 3(a)).

BT is an applicationbenchmark.The codeis similar to the SPcode(seeFigure3(b)). It solvesa Block

Tridiagonal system of equations resulting from approximately factored, implicit, finite-difference

discretizationof the Navier-Stokes equationsin three dimensions.The solution is basedon an ADI

algorithm that solves three sets of uncoupled,block tridiagonal systemsof equationsin x, y, and z

directions.The main subroutinesof BT contain loops with calls to threemain partsof solver in each

direction: formation of left-hand side (lhz); forward elimination for one block (solve_cell), and

backsubstitution(backsubstitute). Thesesubroutinesoffer sufficient parallelismthat was exploited by

insertingparallelizationdirectives for key loops.A BLOCK datadistribution in the z-directionwasalso

added to improve the data locality.

In orderto manuallyparallelizeFT andBT, thefollowing stepsweretaken: (1) inter-proceduralanalyses;

(2) loop nesttransformations;and(3) locality optimizations.Sincewe considerthesestepsto be generic

andessentialto parallelizeany realapplicationfor a shared-memorymultiprocessor, we presentdetailsof

these steps in the rest of this subsection.

3.2.1 Inter-Procedural Analysis

Applicationswritten in a structuredmanneroften containsubroutinecalls within someloops that are

potentiallyparallelizable.It is saferfor anautomaticparallelizationtool to assumethatthesubroutinecalls

embeddedin a loop arenot independentto avoid incorrectbehavior. Severaltoolsprovide inter-procedural

analysis,however, it is overly time-consumingfor evenmodestlylargecodes.PFA doesnot provide inter-

proceduralanalysissupport.Unfortunately, it is not possibleto leave the loops with subroutinecalls

unparallelizedbecausethey mayrepresenta significantportionof theentireexecutiontime. In suchcases,

theuseris responsibleto performtheinter-proceduralanalysisto decidewhetheror not a loop containing

x_solve

y_solve

lhsx

x_solve_cell

x_backsubstitute

Repeat n times
adi

Figure 3. Code structure of sequential NAS benchmarks: (a) FT and (b) BT.

(a) (b)

z_solve

add

evolve

fft

Repeat n times
ft

ffts1

ffts2

ffts3

checksum

lhsy

y_solve_cell

y_backsubstitute

lhsz

z_solve_cell

z_backsubstitute

7

subroutine calls should be parallelized.

Figure4(a)presentsa typicalblockof codetakenfrom FT. It consistsof a loopnest,which is parallelizable

exceptfor a subroutinecall. Eventhoughtheouterloop doesnot have any dependencies,it is not possible

to determinewhetherthe subroutinecalls are independentfrom one iteration to anotherwithout inter-

proceduralanalysis.This is a typicalsituationwith numerouscodeblocksof FT andBT. In thosecases,we

analyzedependenciesof thesubroutineon subsequentiterationsof theouterloop in thecalledfunction.If

thereare no dependencies,we manuallyparallelizethe outer loop, as shown in Figure 4(b). Note that

C$DOACROSS is the SGI Fortran77 loop parallelization directive [9].

3.2.2 Loop Nest Optimization

It is customaryto parallelize the outer-most loop in a loop nest to distribute substantialamount of

computationto multiple processors.Indicesin a loop nestareusuallychosento optimizethe locality of

dataaccessedfrom the loop. In many cases,somedataaccessesmay have dependencesdueto the outer-

mostloop index while therearenodependenciesdueto at leastoneotherloop index. For suchcases,it may

be possibleto transformthe loop nestsuchthat the index with no dependencesbecomesthe outer-most

index to allow efficient parallelizationof theentireloop nest.Theuserhasto make a trade-off betweenthe

performancegain due to parallelizationof the loop nestand the performancedegradationdue to non-

optimal data locality. PFA and many other parallelization tools leave such decisions to the user.

Figure5(a)presentsa block of codetakenfrom BT, which of a loop nestwith onedependencedueto the

outermostindex k. For agivenvalueof k, anaccessto thearrayelementrhs(n,i,j,k+1) mayrequire

a non-localmemoryaccess.If we parallelizetheoutermostloop, thenaccessesto thearrayrhs will need

to besynchronizedwith otherprocessorsto ensurecorrectness.ConsideringthatFortranstoresarraysin a

column-majorfashion,theloop indicesarein anorderthatoptimizesdatalocality. However, notethatthere

is no dependencesdueto any otherloop indices.Therefore,interchangingj andk indiceswill resultin a

minimum penalty of non-optimal data locality comparedto any other permutationof loop indices.

Additionally, we can now parallelize the outer-most loop and the performancegain due to more

computation within the outer loop offsets the cost of non-optimal data locality (see Figure 5(b)).

 do k = 1, d(3)
 do jj = 0, d(2) - fftblock, fftblock
 do j = 1, fftblock
 do i = 1, d(1)
 y(j,i,1) = x(i,j+jj,k)
 enddo
 enddo
 call cfftz (is, logd(1),
 > d(1), y, y(1,1,2))
 do j = 1, fftblock
 do i = 1, d(1)
 xout(i,j+jj,k) = y(j,i,1)
 enddo
 enddo
 enddo
 enddo

c$doacross local(k,jj,j,i,y)
 do k = 1, d(3)
 do jj = 0, d(2) - fftblock, fftblock
 do j = 1, fftblock
 do i = 1, d(1)
 y(j,i,1) = x(i,j+jj,k)
 enddo
 enddo
 call cfftz (is, logd(1),
 > d(1), y, y(1,1,2))
 do j = 1, fftblock
 do i = 1, d(1)
 xout(i,j+jj,k) = y(j,i,1)
 enddo
 enddo
 enddo
 enddo

Inter-procedural analysis

Figure 4. An example of inter-procedural analysis during the parallelization of FT.

(a) (b)

8

3.2.3 Data Locality Optimization

An importantperformanceconsiderationfor a DSM systemis to locatedatacloseto the computationto

obtainreasonableperformance.Non-localmemoryreferencesandfalse-sharingarethemaindatalocality

bottlenecksthat affect most of the shared-memoryparallel programs.SGI Fortran77compiler supports

data distribution and data affinity directives to improve the locality of data close to the

computation[9]. This datadistribution is different from that supportedby data-parallellanguages.Data-

parallellanguagessupportthedistribution of individual elementsof arrayson to differentnodes.However,

the data distribution directives here support the distribution at a coarse granularity of pages of memory.

Figure 6(a) shows an example code taken from BT where data distribution and affinity

directives were usedto co-locatedatawith computation.The BLOCK distribution was usedalong one

dimensionof arrayrhs with theaffinity clause(seeFigure6(b)) to ensuretheco-locationof specific

pages of data with the computation. This significantly improved its performance (see Section 4).

4 Evaluation of Parallelized Code

Weevaluatetheparallelizedcodefrom two perspectives:performanceandlevel of effort. Wequantitatively

 do k=1,grid_points(3)-2
do j=1,grid_points(2)-2

 do i=1,grid_points(1)-2
 do m=1,BLOCK_SIZE
 do n=1,BLOCK_SIZE
 rhs(m,i,j,k) = rhs(m,i,j,k)
 > - lhs(m,n,cc,i,j,k)*rhs(n,i,j,k+1)
 enddo
 enddo
 enddo
 enddo
 enddo

c$doacross local(j,k,i,m,n)
 do j=1,grid_points(2)-2
 do k=grid_points(3)-2
 do i=1,grid_points(1)-2
 do m=1,BLOCK_SIZE
 do n=1,BLOCK_SIZE
 rhs(m,i,j,k) = rhs(m,i,j,k)
 > - lhs(m,n,cc,i,j,k)*rhs(n,i,j,k+1)
 enddo
 enddo
 enddo
 enddo
 enddo

Figure 5. An example of loop nest optimization during parallelization of BT.

(a) (b)

c$doacross local(k,j,i,m,n)
do k=1,grid_points(3)-2
 do j=1,grid_points(2)-2
 do i=grid_points(1)-2,0,-1
 do m=1,BLOCK_SIZE
 do n=1,BLOCK_SIZE
 rhs(m,i,j,k) = rhs(m,i,j,k)
 > - lhs(m,n,cc,i,j,k)*rhs(n,i+1,j,k)
 enddo
 enddo
 enddo
 enddo
 enddo

c$distribute rhs(*,*,*,BLOCK)
c$doacross local(k,j,i,m,n)
c$&, affinity(k) = data(rhs(m,i,j,k))
 do k=1,grid_points(3)-2
 do j=1,grid_points(2)-2
 do i=grid_points(1)-2,0,-1
 do m=1,BLOCK_SIZE
 do n=1,BLOCK_SIZE
 rhs(m,i,j,k) = rhs(m,i,j,k)
 > - lhs(m,n,cc,i,j,k)*rhs(n,i+1,j,k)
 enddo
 enddo
 enddo
 enddo
 enddo

Figure 6. Co-location of data with computation for parallelizing BT.

(a) (b)

9

analyzethe performanceof directives-basedparallelizedprogramsby comparingtheir execution times

with the hand-parallelizedand optimized implementationsof the same programs.In addition, we

qualitatively evaluate the level of effort to parallelize sequential code using shared-memory

multiprocessing directives.

4.1 Comparative Performance

NAS benchmarkswere originally written as a suite of paper-and-pencilbenchmarksto allow high-

performancecomputingsystemvendorsandresearchersto developtheir own implementationsto evaluate

specificarchitecturesof their interest[4]. NAS alsoprovidesits own of hand-parallelizedmessage-passing

implementationof the benchmarksbasedon MPI message-passinglibrary [10]. This implementationis

carefully written and optimized for a majority of existing high performancecomputing platforms.

Therefore,we comparetheperformanceof our directive-basedimplementationof NAS benchmarkswith

the MPI-basedhand-parallelizedimplementationfor Origin2000. ClassA benchmarkswere used for

comparisons reported in this subsection.

Figure7 presentsthecomparisonbetweenautomaticallyparallelizedimplementationsof SP, CG,andMG

with the hand-parallelizedimplementationsof the same.For CG and MG, the performanceof two

implementationsis comparable.However, theperformanceof directives-basedparallelizedSPdegradesas

thenumberof processorsincreasesbeyondeightwhile executiontime for theMPI-basedimplementation

continuesto reducewith the numberof processors.This differenceis primarily due to superiordata

placementof thehand-parallelizedSPresultingfrom afinergranularityof datadistribution.As thenumber

of processorsincreases,theamountof dataownedby a processorreducesproportionately. This resultsin a

bettermemorysystemperformance.For the directives-basedimplementation,data is distributed at the

granularityof pages.Therefore,asthenumberof processorsincrease,multiple processorshave to access

datafrom pagesthatthey donotown locally, whichadverselyimpacttheoverall executiontime. In caseof

CG andMG, datalocality doesnot becomea bottleneckdueto comparatively smallersizeof codewith

smaller number of memory accesses.Therefore, performanceremains comparablewith the hand-

parallelized implementations of CG and MG.

Figure8 presentsthe comparisonbetweendirectives-basedparallelizedversionsof FT andBT with the

hand-parallelized,MPI-basedversionsof thesame.In both thecases,theperformanceimproveswith the

0 5 10 15 20 25
0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

E
xe

cu
tio

n
tim

e
(s

ec
)

E
xe

cu
tio

n
tim

e
(s

ec
)

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of processors Number of processors Number of processors

Figure 7. Performance comparison of automatic shared-memory multiprocessing directives-based
parallelization of SP, CG, and MG benchmarks with MPI-based, hand-parallelized and -optimized

current versions of the same benchmarks. These results are based on Class A benchmarks.

(a) SP (b) CG (c) MG

x—PFA-parallelized
o—Hand-parallelized

x—PFA-parallelized
o—Hand-parallelized

x—PFA-parallelized
o—Hand-parallelized

10

numberof processors.In caseof FT, the MPI-basedimplementationprovesto be superiorto the shared-

memoryimplementationdueto dataplacement.In caseof BT, thedatalocality wasmeticulouslytunedfor

almostall the parallelizedloops to ensurethat eachloop iteration is scheduledat a processorthat owns

elementsof anarrayaccessedduringthoseiterations.Consequently, theperformanceof BT is comparable

to its hand-parallelized implementation.

4.2 Level of Effort

Parallelizationof a sequentialapplicationis a non-trivial taskthatoftenrequireshundredsof man-hoursof

effort [13]. For instance,hand-parallelizationof NAS benchmarksuite took more than ten man-years.

However, it is hardto separatetimespentonparallelizationandtimespenton tuning.It takesonly amatter

of minutesto automaticallyparallelizeSP, CG,andMG usingnative toolson Origin2000.For FT andBT,

about two weeks were spent to analyze and manually parallelize them using shared-memory

multiprocessingdirectives.For BT, anadditionalweekwasrequiredto tuneits performanceandscalability

by insertingappropriatedataplacementdirectives.It shouldbenotedthat this included“learningtime” as

we were not intimately familiar with the application-domaindetails of theseprogramsduring their

directives-basedparallelization.Basedon our qualitative assessment,this level of effort is considerably

less than it would have been necessary to parallelize these benchmarks using explicit message-passing.

5 Related Work

Several research efforts have focused on parallelizing sequential programs for shared-memory

multiprocessors.Theseefforts arebecomingincreasinglyimportantdueto the revival of shared-memory

multiprocessorswith improved scalabilityvia distributedmemoryandhardwarecache-coherence.SUIF

compiler systemincorporatesvarious modules that can be used to analyzethe sequentialprogram,

parallelizethe loops, distribute programarrays,and perform inter-proceduralanalysis[2,3]. Polaris is

anotherparallelizingcompilerthatcangenerateparallelizedcodefor SMPs[12,14].CAPTools is a semi-

automaticparallelizationtool thattransformsa sequentialprogramto a message-passingprogramby user-

directeddistributionof arrays[6]. Fortran-D[1] andvariousimplementationsof High PerformanceFortran

E
xe

cu
tio

n
tim

e
(s

ec
)

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of processors Number of processors

Figure 8. Performance comparison of shared-memory multiprocessing directives-based parallelization of
FT and BT benchmarks with MPI-based, hand-parallelized and -optimized current versions of the same

benchmarks. These results are based on Class A benchmarks.

(a) FT (c) BT

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

x—Directive-parallelized
o—Hand-parallelized

x—Directive-parallelized
o—Hand-parallelized

11

(HPF[5]) areexamplesof parallelizingcompilersthatwork for sequentialprogramsthatcanbenefitfrom

dataparallelism.KAP [7] andPFA [9] areexamplesof commercialparallelizationtools for SMPs.Our

experienceswith mostof thesetoolsto parallelizesequentialNAS benchmarkswill bereportedelsewhere.

Basedon this experienceandresultsreportedin this paper, we considerthat tools for SMPsaresimpleto

learn and use and their performance is promising.

6 Discussion and Conclusions

This studyfocusedon parallelizationof sequentialNAS benchmarksusingcompilerdirectivesfor shared

memorymultiprocessingon Origin2000.Our experiencesindicatethat directivesbasedparallelizationis

simpleandrequiresminimaleffort onthepartof usersby exploiting sharedaddressspaceof theunderlying

architecture.Performancecan be improved incrementallyby enhancingthe efficient use of memory

hierarchies, especially caches.

Parallelizationof sequentialcode for shared-memorysystemshas beena thoroughly researchedarea.

Parallelizationtools arestartingto becomepopulardueto the revival of shared-memoryarchitectureby

DSM systems.Useof directives-basedparallelismhasbeenlimited dueto portability issues.Almost every

vendor of a shared-memorysystemoffers its own extensionof Fortran77languagevia parallelization

directives.Thesedirectivesarenot portablefrom oneshared-memorysystemto another. Recently, several

vendorshave initiateda standardizationefforts for shared-memoryparallelizationdirectivesin theform of

OpenMPstandard[11]. OpenMPhasproposedan API for compiler directives that can be usedacross

shared-memoryplatforms.Introductionof suchstandardsis a promisingdevelopmentthat may simplify

the portability issues.

An addedadvantageof directives-basedparallelismis that the programcanbe compiledasa sequential

programbecausedirectivesappearascommentsto thecompilerwithout appropriateflag.Therefore,there

is no needto maintaina separatesequentialversionof an application.Additionally, programsare not

required to be recompiled for executing on a different number of processors.The runtime system

determinesdynamicallydeterminesthenumberof processorsandappropriatelyschedulestheparallelized

loop iterations.

Directives-basedparallelismis essentiallya fine-grainedparallelismthat works at the level of individual

loop iterations.This is greatly different from conventional coarse-grainedparallelism at the level of

processesor threads.Whenit is implementedcarefully, it ensuresmuchbetterload-balancecomparedto

the conventionalmessage-passingor data-paralleltechniques.On the otherhand,the useris requiredto

spendadditionaltime to ensureproperdatalocality to obtain performancethat is comparableto hand-

parallelized, message-passing based implementation.

References

[1] V. Adve, J-C.Wang,J. Mellor-Crummey, D. Reed,M. Anderson,andK. Kennedy, “An Integrated
CompilationandPerformanceAnalysisEnvironmentfor DataParallel Programs,” Proceedingsof
Supercomputing ‘95, San Diego, CA, December 1995.

12

[2] S.P. Amarasinghe,J.M. Anderson,M. S.Lam andC. W. Tseng,“The SUIF Compilerfor Scalable
ParallelMachines,” Proceedingsof theFifth ACM SIGPLANSymposiumon PrinciplesandPractice
of Parallel Processing, July, 1995.

[3] Jennifer-Ann M. Anderson,“AutomaticComputationandDataDecompositionfor Multiprocessors,”
TechnicalReport CSL-TR-97-719,ComputerSystemsLaboratory, Dept. of Electrical Eng. and
Computer Sc., Stanford University, 1997.

[4] David Bailey, Tim Harris,William Saphir, RobvanderWijngaart,Alex Woo, andMauriceYarrow,
“The NAS Parallel Benchmark 2.0,” Technical Report NAS-95-020, December 1995.

[5] High PerformanceFortranForum.High PerformanceFortranLanguageSpecification,Version1.0.
Scientific Programming, 2(1 & 2), 1993.

[6] C. S. Ierotheou,S. P. Johnson,M. Cross,and P. F. Leggett “Computeraidedparallelisationtools
(CAPTools)—conceptualoverview and performanceon the parallelisationof structuredmesh
codes”Parallel Computing, Vol.22, 1996, pp.163-195.

[7] Kuck & Associates,Inc., “ExperiencesWith Visual KAP and KAP/Pro ToolsetUnder Windows
NT,” Technical Report, Nov. 1997.

[8] Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard,” May 5, 1994.

[9] MIPSpro Fortran77Programmer’sGuide, SiliconGraphics,Inc. Availableon-linefrom: http://tech-
pubs.sgi.com/library/dynaweb_bin/0640/bin/nph-dynaweb.cgi/dynaweb/SGI_Developer/
MproF77_PG/@Generic__BookView.

[10] NAS Parallel Benchmarks. Available on-line from: http://science.nas.nasa.gov/Software/NPB.

[11] OpenMP:A ProposedStandard API for SharedMemoryProgramming, Oct.1997.Availableon-line
from http://www.openmp.org.

[12] David A. Padua,Rudolf Eigenmann,JayHoeflinger, Paul Petersen,PengTu, StephenWeatherford,
andKeith Faigin, “Polaris:A New-GenerationParallelizingCompilerfor MPPs,” TechnicalReport
CSRD # 1306, University of Illinois at Urbana-Champaign, June 15, 1993.

[13] CherriM. Pancake,“The EmperorHasNo Clothes:WhatHPCUsersNeedto SayandHPCVendors
Need to Hear,”, Supercomputing ‘95, invited talk, San Diego, Dec. 3–8, 1995.

[14] InsungPark,MichaelJ.Voss,andRudolf Eigenmann,“Compiling for theNew Generationof High-
Performance SMPs,” Technical Report, Nov. 1996.

13

Parallelization of NAS Benchmarks for Shared
Memory Multiprocessors

F�GIHKJ�LNMPOQJ�RBMTS�UWV6V6XYJ�Z\[^]�HK_QR`_aUcbdHDV6X^RBMeLgf
MThiMj[
]�HDfAkl]�MeO`HDZDf6OQJ�VmRBMeno_QRB]qp�GIHKJ�LgMrhs_QRBtuM�[vhwf6]�Hw]�HDM
J�UW]�HK_aR`x�k�yz]q_{MeZKkqU|RBM}O`VAJ�RBf
]�X^_QS~nWRBM�kqMeZI]qJ�]�f�_aZwJ�Z\[
]�MeO�HDZDf
OQJ�V�J�O`O`UWR�J�O`X|p�GI]qJ�tuMrn|MeR`k�_aZKJ�V~RBM�kqnc_QZ\k�f6�
� f6V
f6]�X^S�_aR�]�HDM��dUoJ�V
f6]�X�_QSI]�HDfAk�[�_QO�UW��MTZD]qp(�
�����z�d���I�
�r�,� �4�
�����z�d���I�
�r�,� �4�

���j�Q�(��� � ���j�6�(¡¢¤£ ¡¦¥§¡¦� ¨ ©«ª

¬z ¥®���/¯�°q°q�(���±¯�² ³¯�¡¦¡>� ¨A©j´ ¬zµ¶���°q���(¥±© £q¢¤· �6��ª ¸}¹j¹jºA»T¼ ���D�¾½,½

